منابع مشابه
On Torsion-by-Nilpotent Groups
Let C be a class of groups, closed under taking subgroups and quotients. We prove that if all metabelian groups of C are torsion-by-nilpotent, then all soluble groups of C are torsion-by-nilpotent. From that, we deduce the following consequence, similar to a well-known result of P. Hall: if H is a normal subgroup of a group G such that H and G/H ′ are (locally finite)-by-nilpotent, then G is (l...
متن کاملHyperkähler Torsion Structures Invariant by Nilpotent Lie Groups
We study HKT structures on nilpotent Lie groups and on associated nilmanifolds. We exhibit three weak HKT structures on R which are homogeneous with respect to extensions of Heisenberg type Lie groups. The corresponding hypercomplex structures are of a special kind, called abelian. We prove that on any 2-step nilpotent Lie group all invariant HKT structures arise from abelian hypercomplex struc...
متن کاملThe isomorphism problem for residually torsion-free nilpotent groups
Both the conjugacy and isomorphism problems for finitely generated nilpotent groups are recursively solvable. In some recent work, the first author, with a tiny modification of work in the second author’s thesis, proved that the conjugacy problem for finitely presented, residually torsion-free nilpotent groups is recursively unsolvable. Here we complete the algorithmic picture by proving that t...
متن کاملOn the Dimension of Matrix Representations of Finitely Generated Torsion Free Nilpotent Groups
It is well known that any polycyclic group, and hence any finitely generated nilpotent group, can be embedded into GLn(Z) for an appropriate n ∈ N; that is, each element in the group has a unique matrix representation. An algorithm to determine this embedding was presented in [6]. In this paper, we determine the complexity of the crux of the algorithm and the dimension of the matrices produced ...
متن کاملNilpotent Groups
The articles [2], [3], [4], [6], [7], [5], [8], [9], [10], and [1] provide the notation and terminology for this paper. For simplicity, we use the following convention: x is a set, G is a group, A, B, H, H1, H2 are subgroups of G, a, b, c are elements of G, F is a finite sequence of elements of the carrier of G, and i, j are elements of N. One can prove the following propositions: (1) ab = a · ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2001
ISSN: 0021-8693
DOI: 10.1006/jabr.2001.8772